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1 Introduction

The purpose of this report is to assess the mathematical models currently avail-
able for predicting the acoustic behavior of a seabed at frequencies up to about
500 kHz. For unconsolidated seabeds there are currently two rival models, the
general model of a poroelastic medium due to Biot [4] and particularized by
Stoll [37] to seabeds, and the model of Buckingham [11], [12], [13]. The Biot-
Stoll model treats a poroelastic medium as an elastic frame with interstitial pore
�uid. It has two loss mechanisms, intergranular friction and viscous friction due
to the motion of the frame relative to the �uid. It depends upon thirteen para-
meters, which are listed in Table 1. The Buckingham model is derived from the
linearized Navier-Stokes equations. Attenuation is due to grain-to-grain friction
and strain hardening of the �uid between grains. It may be regarded as a causal
version of the standard elastic model of the seabed in the sense that, like the
elastic model, it predicts wave attenuations that are approximately linear in
frequency, but unlike the elastic model, it predicts wave speeds that are log-
arithmically dispersive as required by the Kramers-Kronig causality relations
(see Section 5.4.1).
Assessing the models requires addressing several questions

� To what extent are the predictions of the model in accord with experi-
mental observations? In particular both models were formulated prior to
Sediment Acoustics Experiment 1999 (SAX99) [41], [33] which is to date
the most comprehensive attempt to measure such observables as wave
speeds and attenuations for a sediment with known parameters.

� Are the underlying assumptions used in deriving the models appropri-
ate for an unconsolidated sediment? For instance does an aggregation of
uncemented sand grains constitute a Hookean elastic frame in the sense
assumed by the Biot model? To the extent that this is not the case what
modi�cations are necessary?

� Is the Biot model unnecessarily complicated? The conventional model
Biot-Stoll model depends upon thirteen input parameters, some of which
are not easy to measure. Are the viscous losses predicted by the Biot

2

_______________
Manuscript approved June 22, 2005.



model due to the relative motion of the �uid and frame important for
unconsolidated seabeds? If not might the simpler Buckingham model
which requires only �ve inputs su¢ ce?

Let us begin by illustrating the di¤erent predictions the two models make
in regards to wave speeds and attenuations. Figures 1 and 2 illustrate the
di¤erences. The measured values of compressional wave speed and attenuation
were taken from Williams et al. [44], Figure 6. They are a compilation of
measurements made during Sediment Acoustics Experiment 1999 (SAX99) [41],
[33]. The parameters used in the Biot-Stoll model to produce the prediction
labelled "Best in range �t" in the Figures are given in Table 1, Column 4, and are
also from [44]. These were chosen to give the best �t to the data using parameter
values that were within the range estimates1 in Table 1, Column 3. The authors
noted that better agreement with the two measurements of compressional wave
speed below 1 kHz resulted from changing the parameters porosity, tortuosity
and permeability2 to � = 41:5; � = 1:12; k = 5� 10�11, all of which lie outside
of the estimated ranges. These Biot predictions are labelled "Best �t". As
indicated in Figure 1 the Biot model predicts that compressional wave speed
will be much more dispersive with respect to frequency than the Buckingham
model and is in better accord with the measured wave speeds. On the other
hand Figure 2 shows that the Biot model underestimates the compressional
wave attenuation at frequencies above 100 kHz while the Buckingham model
is in good agreement at all frequencies. To date no one has o¤ered a means
to correct the Buckingham model�s failure to predict the velocity dispersion
observed in the SAX99 exercise and in other experiments. There have recently
been successes in improving the Biot model�s predictions, however, and so the
report will focus on this model.

2 Derivation of the equations of the Biot-Stoll
model

Biot developed his model for a poroelastic medium in a series of papers [3], [6],
[7], [5], [4], [8] written over the course of more than twenty years. It is a general
model which has been applied to areas of science and engineering as diverse as
seabeds, soundproo�ng and ultrasound propagation through bone.

2.1 Constitutive equations

Biot�s notation changed over the course of the years. In deriving the consti-
tutive equation and equations of motion we follow Biot [4] and Stoll [37] since
the notation in these articles is the most commonly used in seabed acoustics.
The medium is regarded as an elastic frame with an interstitial pore �uid. Two

1The authors�estimates of the parameter ranges are selective; they chose to disregard some
measurements of the parameters that they deemed unreliable.

2Unless othrwise indicated, the units for physical parameters are meters-kilogram-seconds.
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Figure 1: SAX99 measurements of compressional wave speed. The Bucking-
ham model predictions were computed from the best �t parameters in Table 1
assuming cp = 1771m = s at 38 kHz, cs = 129m = s; �s = 30 dB/m at 1 kHz.

Symbol Parameter Range Best �t
�f Density of the pore �uid [1020; 1023] 1023 kg =m3

�r Density of sediment grains [2664; 2716] 2690 kg =m3

Kb = ReK
�
b Real frame bulk modulus 4:36� 107 Pa

ImK�
b Imag frame bulk modulus �2:08� 106 Pa

� = Re�� Real frame shear modulus [1:7; 4:3]� 107 2:92� 107 Pa
Im�� Imag frame shear modulus �[1:3; 2:6]� 107 �1:8� 106 Pa
Kf Fluid bulk modulus [2:37; 2:42]� 109 2:395� 109 Pa
Kr Grain bulk modulus [3:2; 4:9]� 1010 3:2� 1010 Pa
� Porosity [0:363; 0:394] 0:385
� Viscosity of pore �uid [0:95; 1:15]� 10�3 1:05� 10�3 kg =m � s
k Permeability [2:1; 4:5]� 10�11 2:5� 10�11m2
� Tortuosity [1:19; 1:57] 1:35
a Pore size parameter 2:65� 10�5m

Table 1: Parameter ranges for the Biot-Stoll model measured in SAX99. The
pore size parameter was caluculated from other parameters. The real and imag-
inary parts of the frame bulk modulus were taken from the literature.

4



Figure 2: SAX99 measurements of compressional wave attenuation. The Buck-
ingham model predictions were computed from the best �t parameters in Table
1 assuming cp = 1771m = s at 38 kHz, cs = 129m = s; �s = 30 dB/m at 1 kHz.
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displacement vectors u(x; y; z; t) = [ux(x; y; z; t); uy(x; y; z; t); uz(x; y; z; t)] and
U(x; y; z; t) = [Ux(x; y; z; t); Uy(x; y; z; t); Uz(x; y; z; t)] track the macroscopic
motion of the frame and �uid respectively while the divergences e = r�u and
� = r�U give the frame and �uid dilatations. For an isotropic elastic body the
strain energy is a function

W =W (I1; I2; I3)

of the three elastic invariants (see Love [29])

I1 = exx + eyy + ezz = e

I2 = eyyezz + exxezz + exxeyy �
1

4

�
e2yz + e

2
xz + e

2
xy

�
I3 = exxeyyezz +

1

4

�
eyzexzexy � exxe2yz � eyye2xz � ezze2xy

�
:

where the strains are related to the displacements by

exx =
@ux
@x

; eyy =
@uy
@y
; ezz =

@uz
@z

(1)

exy =
@ux
@y

+
@uy
@x

; exz =
@ux
@z

+
@uz
@x

; eyz =
@uy
@z

+
@uz
@y
:

For a poroelastic medium a strain energy function of the form

W =W (I1; I2; I3; �)

is posited. The additional quantity is the increment of �uid content

� = �(e� �) (2)

where � denotes the porosity of the medium. For small displacements a strain
energy function can be taken to be a linear function of the quadratic terms only

W =W (I1; I2; �) =
H

2
e2 � 2�I2 � Ce� +

M

2
�2:

The choice of symbols for the coe¢ cients is made simply to arrive at the form
of the constitutive equations given in [4]. The six distinct aggregate stresses on
an element of the medium are denoted by

�xx; �xy; �xz; �yy; �yz; �zz:

The constitutive equations are then found by di¤erentiation �xx = @W
@exx

; �xy =
@W
@exy

: : : ; pf =
@W
@� ; where pf is the pore �uid pressure, to be

�xx = He� 2� (eyy + ezz)� C� (3)

�yy = He� 2� (exx + ezz)� C�
�zz = He� 2� (exx + eyy)� C�
�xy = �exy; �xz = �exz; �yz = �eyz

pf =M� � Ce:
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From these equations the modulus � is seen to be the Lamé shear coe¢ cient. In
the absence of the two �uid coe¢ cients C andM the �rst four equations become
those of an elastic solid with the modulus H becoming the Lamé compressional
coe¢ cient.
In order to relate the moduli H;C and M to standard quantities in elastic

and �uid media, Stoll followed Biot and Willis [5] in considering two thought
experiments:

� The jacketed test (Figure 3) in which a saturated sample of the porous
medium is placed in a �exible, impervious jacket and a constant external
pressure p0 is applied. Fluid is allowed to drain from the sack in order to
keep the �uid pressure constant, whence it may be normalized to pf = 0: In
this case the frame will exert an equilibrating counter pressure Kbe = �p0
where Kb is the frame�s bulk modulus.

� The unjacketed test (Figure 4) in which a sample of the medium is im-
mersed in �uid and a uniform pressure p0 is applied to the surface of the
�uid. In this case pf = p0 and the counteracting pressures are Kre =
Kf � = �p0 and Kfr� = p0, where Kr is the bulk modulus of the frame
material, Kf is the bulk modulus of the �uid, andKfr is another modulus.

In either test

�xx = �yy = �zz = �p0

�xy = �xz = �yz = 0:

Upon substituting the �rst equation into the �rst three equations of (3) and
then adding the equations together we obtain

�p0 = He� 4=3�e� C�: (4)

For the jacketed test we then have from (4)

Kb = H � 4=3�� C�=e:

By setting pf = 0 in the last equation in (3) we obtain

�=e = C=M

whence
Kb = H � 4=3�� C2=M: (5)

For the unjacketed test we have from (4)

Kr = H � 4=3�+ CKr=Kfr: (6)

Also for the unjacketed test we have from the last equation in (3)

1 =M=Kfr + C=Kr (7)
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Solving (5),(6) and (7) for H;C and M gives

H = Kb +
4

3
�+

(Kr �Kb)
2

D �Kb
(8)

C =
Kr(Kr �Kb)

D �Kb

M =
K2
r

D �Kb

where
D = Kr(1 +Kr=Kfr): (9)

If the sample undergoes no change in porosity during the unjacketed test then

� = �(e� �) = �
�
� p0

Kr
+
p0

Kf

�
and thus Kfr is related to the bulk modulus Kf of the pore �uid by

1

Kfr
= �

�
1

Kf
� 1

Kr

�
(10)

in which case
D = Kr(1 + �(Kr=Kf � 1)): (11)

Observe that the �rst two terms of (8)1 are the compressional Lamé coe¢ cient
of an elastic solid. The last term then represents a correction for the presence
of the pore space. It goes to zero as � ! 0 and Kr ! Kb.

2.2 Equations of motion

In [4] Biot derived equations of motion for a poroelastic medium from Lagrange�s
equations

@�xx
@x

+
@�xy
@y

+
@�xz
@z

=
@

@t

�
@T

@
:
ux

�
(12)

@�xy
@x

+
@�yy
@y

+
@�yz
@z

=
@

@t

�
@T

@
:
uy

�
@�xz
@x

+
@�yz
@y

+
@�zz
@z

=
@

@t

�
@T

@
:
uz

�
@pf
@x

=
@

@t

�
@T

@
:
wx

�
+
@D

@
:
wx

@pf
@y

=
@

@t

�
@T

@
:
wy

�
+
@D

@
:
wy

@pf
@z

=
@

@t

�
@T

@
:
wz

�
+
@D

@
:
wz
:
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Figure 3: Jacketed test.

Figure 4: Unjacketed test.
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with the kinetic energy function

T = (13)
1

2

h
�
�
:
u
2
x +

:
u
2
y +

:
u
2
z

�
� 2�f

� :
ux

:
wx +

:
uy

:
wy +

:
uz

:
wz
�
+m

�
:
w
2
x +

:
w
2
y +

:
w
2
z

�i
and the Rayleigh dissipation function

D =
1

2
d
h
:
w
2
x +

:
w
2
y +

:
w
2
z

i
:

Here � = (1 � �)�r + ��f is the aggregate density of the medium, �r is the
density of the frame material, �f is the density of the pore �uid, and m and d
are mass and dissipation parameters which will be discussed shortly. The vector

w = �(u�U)

measures the relative displacement of the frame and �uid. The dots over the
components of u and w denote partial derivatives with respect to time. When
the expressions for T and D are substituted into (12) the following equations of
motion result

�r2u+r[(H � �)e� C�] = @2

@t2
(�u� �fw) (14)

r[Ce�M�] = @2

@t2
(�fu�mw)� d

@

@t
w:

For uniform pore size and a �ow parallel to the pore direction, the mass
parameter m would be �f=�, so that in (14)2 �fu�mw = �fU , but given that
not all of the �uid will �ow in the direction of the macroscopic pressure gradient
due to the tortuosity of the pore space, Stoll [37] takes the parameter m to be

m =
��f
�
; � � 1

where � is referred to as the tortuosity3 . Stoll states that for pores with all
possible orientations the value of � would be 3, but he gives no explanation or
citation.
Finally note that the dissipation term in (14)2 has the dimensions of a pres-

sure gradient. According to Darcy�s law for steady laminar (Poiseuille) �ow
through a porous medium the average seepage velocity hV i due to a pressure
gradient @p

@x is

hV i = � k

��

@p

@x
; (15)

where � and k are the porosity and permeability of the medium. Identifying
�� hV i with @

@tw in (14)2, suggests that the parameter d should be

d =
�

k
:

This is the case for only Poiseuille �ow, however. The modi�cation required for
oscillatory motion is discussed in the next section.

3 It is also referred to as the structure factor or constant or the virtual mass coe¢ cient.
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2.3 The general form of the dissipation parameter

To �nd the form of the dissipation parameter d in (14)2 we need to calculate
the ratio of the force per unit volume exerted on the pore walls to the aver-
age velocity of the �uid �owing through the pore space. Biot [7] solved the
problem of �uid motion in a duct for two cases that he regarded as opposing
extremes, a cylindrical duct and a duct between two parallel plates, the latter
approximately representing the case of �at ovaloid pores. Consider a �ow in
the x-direction for each case. For a cylinder of radius a with spatial coordinates
(x; r; �) considerations of symmetry dictate that the velocity of the �ow V will
depend only on r and time t and the stress � on the wall of the cylinder only
on t. The dissipation parameter d will take the form

d =
2�a��x
�a2�x

� hV i =
2�

�a hV i (16)

where �a2�x is the volume of an arbitrary element of the cylindrical duct and
hV i denotes the average seepage velocity. On the other hand for two plates of
separation 2a1 with spatial coordinates (x; y; z);�a1 � y � a1 considerations of
symmetry dictate that the stress � is the same on the top and bottom plates
whence for an arbitrary element of the duct

d =

2��x�z
�x�y�z

� hV i =
�

�a1 hV i
: (17)

The position of the �uid U(r; t) is governed by the linearized Navier-Stokes
equation

�f
@2U

@t2
= �@p

@x
+ �r2

�
@U

@t

�
:

Here � is �uid viscosity and the pressure gradient @p@x is assumed to depend upon
time, but to be independent of the spatial coordinates. The position u(t) of the
walls of the duct is also assumed to be independent of x. The relative velocity
V (r; t) = @

@t (U(r; t)� u(t)) then satis�es

�r2V � �f
@V

@t
= ��fX :=

@p

@x
+ �f

d2u

dt2
: (18)

Steady, laminar �ow in which the inertial terms @V
@t ;

d2u
dt2 in (18) are neglected

is termed Poiseuille �ow. For the case of cylindrical ducts the solution of the
di¤erential equation

�

�
d2V

dr2
+
1

r

dV

dr

�
=
@p

@x
; V (a) = 0

is

V (r) =
1

4�

@p

@x

�
r2 � a2

�
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and the average velocity is given by

hV i = 1

4�

@p

@x

1

�a2

Z a

0

Z 2�

0

�
r2 � a2

�
rd�dr = �a

2

8�

@p

@x
: (19)

Comparison of (19) with Darcy�s law (15) gives

k =
�a2

8
(20)

for the permeability of a cylindrical duct. The stress at the wall of the duct is

� = ��V 0(a) = �a
2

@p

@x
(21)

and thus from (16)

d =
2�

�a hV i =
8�

�a2
=
�

k
:

For the case of Poiseuille �ow in a pore duct between parallel plates equation
(18) gives

�
d2V

dy2
=
@p

@x
; V (�a1) = 0

which has solution

V (y) =
1

2�

@p

@x

�
y2 � a21

�
:

The average velocity is then

hV i = 1

2�

@p

@x

1

2a1

Z a1

�a1

�
y2 � a21

�
dy = � 1

3�

@p

@x
a21:

From Darcy�s law (15) it follows that

k =
�a21
3
: (22)

The stress on the wall is

� = ��V 0(a1) = �a1
@p

@x

and thus from (17)

d =
�

�a1 hV i
=
3�

�a21
=
�

k
:

If the duct is assumed to be undergoing time-harmonic oscillations V (x; y; z; t) =

V (x; y; z)ei!t; @p@x (t) =
@p
@xe

i!t; u(t) = uei!t ) X(t) =
�
� 1
�f

@p
@x + !

2u
�
ei!t �

Xei!t, then (18) becomes

�r2V � i!�fV = ��fX: (23)
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Note that ! = 0 corresponds to Poiseuille �ow. For the case of a cylindrical
duct (23) has solution

V (r) =
X

i!

 
1�

J0
�
i3=2�r=a

�
J0
�
i3=2�

� !

where

� = a

r
!�f
�

� �(!)a: (24)

The average velocity is then

hV i = 2

a2

Z a

0

V (r)rdr =
X

i!

 
1 +

2
p
iJ1
�
i3=2�

�
�J0

�
i3=2�

� ! = X

i!

�
1 +

2i

�
T (�)

�
(25)

where

T (�) =
J1(i

3=2�)p
iJ0(i3=2�)

:

The stress at the wall is

� = ��V 0(a) = �� X
i!

i3=2�J1
�
i3=2�

�
aJ0

�
i3=2�

� =
��X

i!a
T (�) (26)

and thus
d =

2�

�a hV i =
8�

�a2
F (�) =

�

k
F (�)

where

F (�) =
1

4

�T (�)

1 + 2i
� T (�)

:

Figure 5 shows the function F (�). As can be seen F (�) ! 1 as � ! 0, thus
giving d = �=k for Poiseuille �ow in the low frequency limit.
For the case of �ow between two plates of separation 2a1 we obtain

d =
�

k
F1(�1)

where

�1 = �(!)a1; F1(�) =
1

3

p
i� tanh

p
i�

1 + i
� tanh

p
i�
:

Observing that the curves ReF1(�1) and ImF1(�1) were almost indistinguish-
able from the curves ReF (�) and ImF (�) with a = 4a1=3 in (24), Biot conjec-
tured that it might be possible to compensate for the deviation from Poiseuille
�ow with increasing frequency by using the complex-valued dynamic viscosity
�F (�) with the pore size parameter a in (24) being chosen appropriately for the
dimensions and geometry of the pores. He did not give much guidance as to
how to measure the pore size parameter other than to suggest is might be ascer-
tainable from experimental data on dispersion of wave speed and attenuation
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Figure 5: Biot�s function F (�):

with respect to frequency. The dissipation parameter d in (14)2, then is given
by

d =
�

k
F (�(!)a)

for any pore shape for which the pore size parameter is ascertainable. When the
time-harmonic factor is e�i!t, rather than ei!t, then d is replaced by its complex
conjugate d. Figure 6 shows the e¤ect that the presence of the factor F (�) has
on the Biot model�s prediction for compressional wave speed and attenuation
when the parameters of Table 1, Column 4 are used.

2.4 Incorporation of viscoelastic intergranular e¤ects

The only loss mechanism considered thus far is viscous loss due to the relative
motion of the frame and the pore �uid. Clearly other loss mechanisms such as
intergranular friction may be of signi�cance. Following the suggestion of Stoll
[37] (see also [39]) most authors have attempted to incorporate such losses by
giving the moduli � and Kb small imaginary parts which are independent of
frequency (see Section 3.5). However, as noted by Turgut [42], this model is not
consistent with the Kramers-Kronig causality relations. Moreover recent work
by Chotiros and Isakson [17] suggests that a more sophisticated approach to
modelling microscopic granular e¤ects may rectify the Biot models poor predic-
tions for compressional wave attenuation at high frequencies that is illustrated
in Figure 2.
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Figure 6: The blue line is the Biot model prediction when d = �F (�)=k. The
red line is the prediction when d = �=k. The upper graph is compressional wave
speed and the lower graph is compressional wave attenuation. The Biot-Stoll
parameters are the best �t parameters of Table 1.

15



Figure 7: From [8].

In [4] Biot gave the general form

H� =
4

3
�� +

�� +  � �
��( + �)� �2

M� =
1

 + � � �2=��

C� =
1� �=��

 + � � �2=�� :

Algebraically these equations are equations (8) rendered in terms of the com-
pressibilities

�� = K�1
b ; � = K�1

r ; c = K�1
f ;  = � (c� �) ;

however Biot suggests that these moduli be regarded as operators calculated
from the operators �� and �� which are chosen appropriately for the phenom-
enon to be modelled. We will discuss three choices of these operators which are
relevant to the work of Chotiros and Isakson.
For �uid �lled cracks and gaps (Figure 7) Biot [8], assuming that the normal

pressure P on the gap and the change in gap width �h are related by P = �Z�h,
arrives at the formula (Figure 8)

�� = �0 +
1

1=�1 + �Z
: (27)

For a �uid-�lled gap Biot �nds that pore �uid pressure satis�es the di¤usion
equation

@2pf
@x2

=
12�c

h2
@pf
@t

where � is viscosity and h is the width of the gap (Figure 9). Thus, assuming
pf (0; t) = pf (D; t) = 0; pf (x; 0) = const,

pf =
1X
n=1

Bn exp

 
�12�c
h2

�
2n� 1
D

�

�2
t

!
sin

�
2n� 1
D

�x

�
:
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Figure 8: From [8].

Figure 9: From [8]
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Figure 10: From [8].

This suggested to Biot that a �uid-�lled gap should be modelled as a series of
Maxwell elements in parallel (Figure 10), giving

�Z =
1X
n=1

an
p+ rn

where p is in general the time-derivative operator d=dt and for the speci�c case
of time-harmonic oscillations p = �i! and the relaxation frequencies are

rn =
12�c

h2

�
2n� 1
D

�

�2
:

Thus Biot�s jacketed compressibility operator for a �uid �lled crack is

�� = �0 +
1

1=�1 �
P1

n=1
i!an
rn�i!

(28)

in the time-harmonic case.
Biot used the following general form for the shear modulus

�� =

Z 1

0

p

p+ r
�(r)dr + �0 + �1p:

For solid dissipation due to shear Biot [8] suggests the representation

�� = �0 + a(�i!)s; 0 < s < 1 (29)

which follows from assuming the relaxation spectrum

�(r) =
a

�
rs�1 sin s�:

Finally Chotiros and Isakson [17] suggest that the presence of air bubbles in
the pore space might reduce the e¤ective �uid bulk modulus (see Section 3.3)
and thereby explain the lower than predicted wave speeds below 1 kHz for the
SAX99 sediment that are shown in Figure 1 without assuming a higher than
measured porosity. In Biot [8] posits that the presence of air bubbles in the
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Figure 11: From [8]

pore �uid can be modelled by assuming the �uid compressibility is given by the
operator (Figure 11)

c� = c0 +
1

ka �ma!2 � iba!
: (30)

Biot points out that if the damping constant ba is small relative to the spring
constant ka, then there will be a resonant frequency.

2.5 Extensions and continuations of Biot�s formulation

Biot recognized that his analysis assumed that the pore size distribution is nar-
row and that some generalization would be required for a material in which
pore sizes were more widely distributed. In this section we present two subse-
quent extensions of Biot�s formulation, the formula for the pore size parameter
developed by Johnson, Koplik and Dashen [25] and the generalization of the
viscosity correction factor F of Yamamoto and Turgut [45]. In this section we
also describe the work of Chotiros and Isakson [17] on intergranular viscoelastic
mechanisms, which represents a continuation of the work described in Section
2.4.

2.5.1 The pore size parameter for distributed pore sizes

Johnson, Koplik and Dashen [25] argue that for pores represented by non-
intersecting canted cylindrical tubes of radius R

8�1k0
�R2

= 1

where �1 is the limit of tortuosity as frequency goes to in�nity and k0 is the
limit of permeability as frequency goes to zero (in their formulation � and k are
frequency dependent) and o¤er the heuristic generalization

8�1k0
��2

= & (31)
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where & � 1 and � is de�ned by

2

�
=

R
Sp
jupj2 dAR

Vp
jupj dV

(32)

where up is the microscopic potential �ow �eld, Sp is the pore-grain surface and
Vp is the pore space volume. For cylindrical pores the �ow �eld is constant in
which case (32) gives � = R, the pore radius. Upon conducting simulations upon
cubical lattices in which the pore radii were distributed according to various
probability distributions they concluded that the approximation & � 1 "may
be violated by a factor of 2 but not apparently by a factor of 10." If we take
& = 1 and identify � with the pore size parameter, and � and k in the Biot-Stoll
parameter set with �1 and k0 (see below) then we arrive at the formula

a =

s
8�k

�
(33)

for the pore size parameter for cylindrical ducts of varying radii. For �at pores
the 8 is replaced by 3. While the reasoning is ad hoc, the formula has found
favor. It was used to determine pore size for seabed for SAX99 by [44] (see
Table 1). It is also used in the application of the Biot model to cancellous bone
[20].
As mentioned above [25] assume that permeability and tortuosity are dy-

namic. An alternative formulation of Biot�s equations due to Hovem and In-
gram [24] gives a dynamic permeability and tortuosity. In (14)2 take m =
�1�f=�; d = �F=k0 = �(Fr�iFi)=k0 and assume time-harmonic motion e(x; y; z; t) =
e(x; y; z)e�i!t; : : :. The result is

r[Ce�M�] = �!2�fu+ !2
�f
�

�
�1 +

��Fi
�fk0!

�
w+

�Fr
k0
i!w

and thus the dynamic permeability and tortuosity are given by

k(!) =
k0
Fr
; �(!) = �1 +

��Fi
�fk0!

: (34)

Since Fi is asymptotically proportional to
p
!, the second term in the formula

for �(!) goes to zero. Likewise Fr(0) = 1 This justi�es the identi�cation of �1
and k0 with the Biot-Stoll tortuosity parameter � and permeability parameter
k in (31). Figure 12 shows k(!) and �(!) for the sand of SAX99.

2.5.2 The viscosity correction factor for distributed pore sizes

Yamamoto and Turgut [45] assume that the pore sizes are distributed according
to a density function e(r) with Z 1

0

e(r)dr = 1:
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Figure 12: Dynamic permeability and poresize given by formulae (34) for the
parameters of Table 1, Column 4.

In their scheme permeability is related to the pore size distribution by

kc =
�

8

Z 1

0

r2e(r)dr; kf =
�

3

Z 1

0

r2e(r)dr (35)

for cylindrical and �at pores respectively. Note that this yields the formulas
(20) and (22) for the case of a single pore size e(r) = �(r � a).
For cylindrical pore ducts the force on the walls per unit volume is (see

(16),(24),(26))Z 1

0

2�(r; !)

r
e(r)dr =

Z 1

0

2

r

��(!)X

i!
T (�(!)r) e(r)dr;

while the average velocity from (25) isZ 1

0

hV i (r; !)e(r)dr =
Z 1

0

X

i!

�
1 +

2i

r�(!)
T (�(!)r)

�
e(r)dr:

Using (16) this gives

d =
2��(!)

R1
0

1
rT (�(!)r) e(r)dr

�
R1
0

�
1 + 2i

r�(!)T (�(!)r)
�
e(r)dr

: (36)
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Observe that for the case of Poiseuille �ow we have from (21),(19) and (35)

d =

R1
0

2�(r;!)
r e(r)dr

�
R1
0
hV i (r; !)e(r)dr

=
8�
R1
0
e(r)dr

�
R1
0
r2e(r)dr

=
�

kc

and thus the expression for d has the expected limit as ! ! 0.
Yamamoto and Turgut suggest a �-normal distribution for pore size

f(�) =
1

��
p
2�
exp

 
� (�� ��)

2

2�2�

!
;�1 < � <1: (37)

Phi units are de�ned by � = � log2 r where r is measured in millimeters. In
this case (36) becomes

d =
2��(!)

R1
�1

1
r(�)T (�(!)r (�)) f (�) d�

�
R1
�1

�
1 + 2i

r(�)�(!)T (�(!)r (�))
�
f (�) d�

:

For d = dr � idi this gives the equations

�(!) = �1 +
di�

!�f
; k(!) =

�

dr
(38)

for the dynamic tortuosity and permeability.
For the �-normal distribution (37) the integral in (35) can be computed

exactly, giving the permeability

k =
�

np
2�2�� exp(2(�� ln 2)

2)10�6m2

where np = 3 or 8 for the case of �at or cylindrical pores respectively. Thus for
given k and ��

�� = �
1

2 ln 2
ln

�
106knp
�

exp(�2(�� ln 2)2)
�
: (39)

Since the pore size parameter is no longer used, there is not an increase in the
number of parameters from the basic Biot-Stoll model, as long as one accepts
the formulas (35). However values for the parameters �� and �� are not readily
available. Yamamoto and Turgut [45] cite only one instance of direct measure-
ment of pore size distribution, "Eagle River sand", for which �� � 5:75; �� � 1:5
phi units.
Figure 13 shows how varying the standard deviation �� of the pore size

distribution a¤ects the dynamic permeability and tortuosity computed from (38)
(cf. Figure 12). The other parameters used were the those of Table 1, Column 4.
For a �xed value of permeability increasing �� decreases dynamic permeability
and increases dynamic tortuosity with the changes being most pronounced at
high frequencies for permeability and low frequencies for tortuosity. Figure
14 shows that the e¤ect of increasing �� on compressional wave speed and
attenuation is to make the sediment behave more like a viscoelastic solid, that
is, it is less dispersive with respect to wave speed and closer to log-linear with
resect to attenuation.
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Figure 13: E¤ect on dynamic permeability and tortuosity of distributed pore
sizes. The permeability was held constant, and the mean pore size was computed
from (39).
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Figure 14: E¤ect on compressional wave speed and and attenuation of distrib-
uted pore sizes. The permeability was held constant, and the mean pore size
was computed from (39).
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2.5.3 Incorporation of "squirt �ow"

Biot�s modelling of viscoelastic forces at the granular level is discussed above
in Section 2.4. Recently Chotiros and Isakson [17] have proposed frequency de-
pendent forms for the moduli K�

b and �
� based on similar considerations. They

take the region between two sand grains to consist of an area of solid contact
and a gap into and out of which �uid can �ow when the frame is subjected to
expansion and compression (Figure 15). Following Dvorkin and Nur [18], they
term this "squirt �ow".The solid contact is modelled as a spring of modulus Kc

and the e¤ect of the �ow in the gap, which will depend on the compressibility
of the �uid and the resistance to radial expansion normal to the direction of the
force is treated as a serial spring-dashpot (Maxwell) element with modulus Ky

and damping constant �y. The two mechanisms are assumed to act in parallel
resulting in what is referred to in viscoelastic theory as the standard linear el-
ement (Figure 16(c)). Under a shearing force the absence of �uid loading for
shear causes the viscoelastic element to simplify to a Kelvin-Voigt element with
modulus Gc and damping constant �s (Figure 16(d)). The e¤ective moduli for
the two types of elements undergoing time-harmonic oscillations e�i!t are (cf.
Gittus [19], for instance)

K�
b = Kc +

Ky

1 + i(!k=!)
(40)

�� = Gc

�
1� i !

!�

�
!k =

Ky

�y
; !� =

Gc
�s
:

As indicated in (40), Chotiros and Isakson identify these e¤ective moduli with
the Biot-Stoll parameters K�

b and �
�. Their argument for this is that the com-

pressibility of the frame minerals is much less than that of the �uid and thus
storage and loss mechanisms modelled by the two viscoelastic elements will pre-
dominate. They term the resulting modi�ed Biot model the "Biot model with
grain contact squirt �ow and shear drag" (BICSQS).
The zero-frequency values Kc and Gc of the two moduli are assumed to be

related by an equation of elasticity4

Kc =
2

3
Gc

1 + �

1� 2�
where � is the Poisson ratio and thus the four independent Biot-Stoll parameters
ReK�

b ; ImK
�
b ;Re�

�; Im�� are replaced by the �ve parameters Gc;Ky; � and the
two relaxation frequencies

fk =
!k
2�
; f� =

!�
2�
:

4The of use such elastic relations has been challenged by Chotiros [15] on the grounds that
an unconsolidated sediment is not a Hookean elastic solid, as is assumed in the Biot model.
In this instance the parameter Kc turns out to have too little e¤ect on the model�s predictions
to test the validity of this criticism, however.
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Figure 15: From [17].
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Figure 16: From [17].

Comparing Chotiros and Isakson�s equation (40)1 with Biot�s equation (28),
we see that they are mathematically identical upon setting the compressibility
�0 and the higher mode moduli an; n > 1 to zero and making the identi�cations
�1 = K

�1
c ; a1 = Ky; r1 = !k. Thus while Biot does not state explicitly what the

compressibilities �0 and �1 mean physically, if we assume that �0 represents the
compressibility of the sand grains and �1 represents the compressibility of the
solid contact region and assume as Chotiros and Isakson do that �1 � �0 then
the two models are both physically and mathematically similar. Biot�s model
does not speci�cally mention resistance to radial �ow as a damping mechanism,
however. Likewise Chotiros and Isakson�s equation for the shear modulus (40)2
is Biot�s equation (29) with �0 = Gc; s � 1; a = �0!

�s
� , though the assumed

physical mechanisms are di¤erent.
Because the speed of shear waves is controlled almost exclusively by the real

part of �� and the parameters a¤ecting the density of the seabed, the modulus
Gc can be computed from a measured value of the shear wave speed, however
there is no obvious way of determining the remaining parameters other than
using them to �t observed data such as that displayed in Figures 1 and 2. Figures
17 and 18 indicate the in�uence of the four parameters Ky; �; fk and f� on
compressional wave speed and attenuation in the case of the SAX99 sand (Table
1, Column 4) when they are varied about Ky = 1 GPa, � = 0:15; fk = 10 kHz
and f� = 50 kHz. Poisson ratios in the range [0:05; 0:25] have little e¤ect on
either speed or attenuation in the frequency range 100 Hz to 1 MHz. None of the
four parameters have much e¤ect below 1 kHz. The shear relaxation frequency
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Figure 17: The e¤ect on compressional wave speed of varying four parameters
in the BICSQS model: Ky = 1� 0:2 GPa, fk = 10� 5 kHz, f� = 50� 25 kHz,
� = 0:15� 0:1. Green, blue and red curves correspond to the lower, middle and
upper values respectively.

f� is in�uential only on attenuation in the upper range of frequencies. The
bulk modulus Ky and the bulk relaxation frequency in�uence wave speed in the
middle to high range of frequencies and attenuation in the middle range.
As discussed above, Biot proposed models of viscoelastic loss that are, at

least mathematically, generalizations of the BICSQS model. Figures 19 and 20
indicate the in�uence of the other parameters and of air bubble resonance. It
was assumed in (28) that

�0 + �1 =

�
2

3
Gc

1 + �

1� 2v

��1
:

Increasing the compressibility �0 lowered the compressional wave speed in the
high frequency range and thus countered the e¤ect of �1 = K�1

y . Likewise
lowering s in equation (29) counteracted the e¤ect on attenuation of increasing
f�, however it also caused wave speed to rise slightly at high frequencies. Thus
if one is seeking to change the predictions of the Biot model in order to produce
better agreement with data, the approximations �0 � 0; s � 1 which lead to
the BICSQS model seem reasonable. The second and third modes in (28) cause
wave speed to rise slightly at higher frequencies. In computing the modes it
was assumed that in equation (28) an = a1=(2n� 1) and kn = (2n� 1)2k1 with
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Figure 18: The e¤ect on compressional wave attenuation of varying four para-
meters in the BICSQS model: Ky = 1�0:2 GPa, fk = 10�5 kHz, f� = 50�25
kHz, � = 0:15�0:1. Green, blue and red curves correspond to the lower, middle
and upper values respectively.
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Figure 19: E¤ect upon compressional wave speed assuming the more general
equations (28), (29) and (30) given by Biot in [8]. It is assumed that Ky =
109; fk = 10 kHz; f� = 50 kHz. In the upper left panel s = 0:75 and green,
blue and red are �0 = 10�9�1 in ascending order. In the upper right panel
�0 = 10

�9 and s = 0:75� 0:25 with the same color ordering. In the lower right
panel �0 = 10�9; s = 0:75 and green, blue and red correspond to using 1,2 and 3
modes in equation (28) respectively. In the lower right panel �0 = 10�9; s = 1:0
and ba = 105; 106; 107 for green, blue and red respectively.

a1 = !k; k1 = Ky. For the air bubble resonance it was assumed c0 = (1��)K�1
f

and k�1a = �K�1
a so that at angular frequency ! = 0 equation (30) gives the

Reuss model composite compressibility

c = (1� �)K�1
f + �K�1

a : (41)

The gas volume fraction was taken to be � = 5 � 10�6. This su¢ ced to give
agreement with the measured low frequency wave speeds shown in Figure 1. The
bulk modulus of air was taken to be Ka = 0:142 MPa, based on a sound speed
of 343 m/s and a density of 1.21 kg/m3. The approximate resonant frequency
was taken to be fa = 25 kHz and the mass ma in (30) was computed from
ma = ka=(2�fa)

2. The damping parameter ba controls how rapidly the wave
speed changes with respect to frequency.
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Figure 20: E¤ect upon compressional wave attenuation assuming the more gen-
eral equations (28), (29) and (30) given by Biot in [8]. It is assumed that
Ky = 10

9; fk = 10 kHz; f� = 50 kHz. In the upper left panel s = 0:75 and green,
blue and red are �0 = 10�9�1 in ascending order. In the upper right panel
�0 = 10

�9 and s = 0:75� 0:25 with the same color ordering. In the lower right
panel �0 = 10�9; s = 0:75 and green, blue and red correspond to using 1,2 and 3
modes in equation (28) respectively. In the lower right panel �0 = 10�9; s = 1:0
and ba = 105; 106; 107 for green, blue and red respectively.
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Sediment �r Kr � k � a

Fine Sand 2670 4:0� 1010 0:43 3:12� 10�14 1:25 1:20� 10�6
Medium Sand 2690 3:2� 1010 0:385 2:5� 10�11 1:35 6:28� 10�5
Gravel 2680 4:0� 1010 0:30 2:58� 10�10 1:25 1:31� 10�4
Silty Sand 2670 3:8� 1010 0:65 6:33� 10�15 3:0 4:25� 10�7
Silty Clay 2680 3:5� 1010 0:68 5:2� 10�14 3:0 1:24� 10�6

Table 2: Biot-Stoll parameters for �ve di¤erent sediment types.

Symbol Estimate
�f 1000
Kf 2:4� 109
� 1:01� 10�3

Table 3: Typical �uid parameters for the Biot-Stoll model.

2.6 Con�rmation of Biot�s equations

The Biot model is often described as phenomenological: it does not delve into
underlying causes. It is worth noting however that Burridge and Keller [14]
did succeed in deriving Biot�s macroscopic equations from the microstructure,
that is, using the linearized equations of elasticity and �uid motion by means of
the mathematical technique of two-scale homogenization under the assumptions
that the medium was macroscopically homogeneous and that microstructure
scale was much smaller than the macroscopic scale. They also demonstrated
the existence of a strain energy function, as postulated by Biot.

3 Determination of the Biot-Stoll parameters

To make predictions using the Biot-Stoll model the thirteen parameters in Ta-
ble 1 must be determined. Historically this has been done eclectically by a
combination of handbook values, empirical formulas, in situ measurements and
reference to the literature. The exception to this is SAX99 in which attempts
were made to measure most of the Biot-Stoll parameters at a site near Fort
Walton Beach Florida (Table 1). In order to examine the predictions of the
Biot model it is useful to have parameters for a variety of seabeds. Values for
six Biot-Stoll parameters for �ve di¤erent sediments are given in Table 2. The
medium sand parameters are those of Table 1 for the sand examined in SAX99.
The �ne sand, silty clay and gravel parameters are from Holland and Brunson
[23]. The parameters for silty sand are from Beebe, McDaniels and Rubano [2].
For the parameters other than medium sand we will use the �uid parameters in
Table 3.
As can be seen in Table 1 some of the Biot-Stoll parameters can be deter-

mined quite accurately and vary little in the context of water-saturated seabeds.
Let us examine some of the parameters which are more di¢ cult to determine.
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3.1 Porosity

In SAX99 porosity was estimated using several di¤erent techniques: gravimetric
determination produced a 95% con�dence interval [0.359,0.387]. Image analysis
produced a range of estimates from 0.34 to 0.48. Gravimetric analysis of resin
impregnated cores resulted in estimates ranging from 0.41 to 0.52. Two separate
conductivity probes in situ yielded 95% con�dence intervals of [0.364,0.383] and
[0.363,0.394]. These and all subsequent values for SAX99 are from Williams et
al. [44]. Historically porosity has been measured from core and grab samples.
The wide range of values generated by the di¤erent techniques used in SAX99
is a surprise since porosity has usually not been regarded as being subject to
great uncertainty.

3.2 Tortuosity

For SAX99 the following de�nition of tortuosity was used: the square of the ratio
of the minimum length of a contiguous path through the pore space between
two points to the linear distance between the points. Tortuosity was estimated
by image analysis of resin-impregnated divers cores.
Traditionally experimenters have simply followed the suggestion of Stoll [37]

and used � = 1:25 for highly permeable sediments and � = 3:0 for silty, less
permeable, sediments (see Table 2).

3.3 Fluid bulk modulus

The bulk modulus of the seawater was calculated from

Kf = �fc
2
o

where co is the sound speed of water in the ocean. The density �f was calculated
based on the temperature and salinity of the water. It was felt that assuming
the properties of the pore water were the same as that of the ocean water above
introduced little error ([44]). The result was the rather narrow range of values
shown in Table 1.
Chotiros and Isakson [17] have recently challenged this range, arguing that

the e¤ective bulk modulus may have been signi�cantly lower, 2.15 GPa versus
2.4 GPa, due to the presence of air bubbles in the pore space. As evidence for
this they cite the attempts to measure gas content of sediment cores described
in Richardson et al. [33] which resulted in measurements ranging from 20 to
150 ppm. The authors of [33] state however that "All of these values indicate
smaller volumes of gas than the system was designed to resolve. We cannot on
the basis of these data reject the hypothesis that the gas content is zero." As
indicated in Figure 19 a very small gas fraction, around 5 ppm, would su¢ ce to
lower the low frequency wave speed the measured values shown in Figure 1 if
the Reuss model (41) is assumed for the e¤ective �uid modulus5 .

5Chotiros and Isakson state that a value of 35.4 ppm would give their chosen value of
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3.4 Permeability and the pore size parameter

For SAX99 a constant head technique on divers cores produced a 95% con�dence
interval of [2:1; 4:5]�10�11m2 for permeability. Image analysis of resin impreg-
nated cores produced a con�dence interval of [0:75; 4:8]� 10�11m2. An in situ
constant head technique produced a con�dence interval of [0:3; 6:1]� 10�11m2.
Thus the estimates spanned more than a decade. As mentioned above Williams
et al. [44] used equation (33) to determine the pore size parameter from the
permeability and tortuosity.
Traditionally experimenters have calculated permeability from statistics on

grain size distribution via a variety of empirical formulae. For instance Holland
and Brunson [23] used the Kozeny-Carmen equation

k =
�3

KS20(1� �)2
(42)

where K is an empirical constant which is approximately 5 for spherical grains
and S0 is the surface area per unit volume of the particles. The latter parameter
was calculated as

S0 =
X
n

6

dn
wn

from a discrete set (dn; wn) of grain sizes dn and proportions wn of total volume
obtained by sorting the sample. Beebe et al. [2] used a di¤erent empirical
relation due to Krumbien and Monk [27] which depends upon the mean M�

and standard deviation �� of grain sizes in � units

k = 7:6d2e�1:31�� � 10�10m2 (43)

where d = 2�M� mm is the mean grain diameter. Hovem and Ingram [24]
identi�ed the pore size parameter with twice the hydraulic radius to arrive at

a =
d�

3(1� �) � 10
�3m : (44)

Permeability is then calculated from the Kozeny-Carmen formula written as

k =
�a2

4K
: (45)

Assuming that grain sizes have a �-normal distribution (37) Chotiros [15] arrives
at the formula

a =
�

3(1� �) exp(y0 + �
2
y)� 10�3m (46)

Kf = 2:15 GPa, but do not state what model this is based upon. This may be a misstatement
since the rest of their gas fraction values are roughly consistent with the Reuss-Voigt-Hill
model which averages the Ruess model value K�1

f = (1 � �)K�1
w + �K�1

a with the Voigt
model value Kf = (1� �)Kw + �Ka where Kw and Ka are the bulk moduli of water and air
respectively.

34



� M� �� kKM kHI k� kC

0.65 6.37 2.19 6:3� 10�15 1:8� 10�12 1:8� 10�10 1:8� 10�14
0.47 3.0 1.7 1:2� 10�12 3:2� 10�11 5:2� 10�10 2:0� 10�12
0.38 0.85 0.83 7:9� 10�11 2:4� 10�10 4:7� 10�10 1:3� 10�10
0.38 0.5 1.0 1:0� 10�10 4:0� 10�10 1:0� 10�9 1:5� 10�10
0.38 1.2 0.6 6:6� 10�11 1:5� 10�10 2:1� 10�10 1:1� 10�10

Table 4: Permeabilities calculated from the same grain size statistics using four
di¤erent formulas.

where y0 = �M� ln 2; �y = ��� ln 2. Finally working from the hydraulic radius
concept Chotiros [15] arrived at a formula for pore size which di¤ers from (46)
only by a minus sign

a =
�

3(1� �) exp(y0 � �
2
y)� 10�3m : (47)

Table 4 shows the result of calculating permeability using formulas (43), (44),
(46), and (47) (under the headings kKM ; kHI ; k�; kC respectively). All of the
grain size statistics and porosities were taken from [2], Table 2. As can be seen
the four formulas lead to widely di¤ering values for permeability, especially as
the grain size gets smaller and the dispersion larger. Thus unfortunately the
value of this very important parameter is elusive.

3.5 Frame response parameters

The frame response parameters are the shear modulus �� and the frame bulk
modulus K�

b . They are usually taken to be complex valued in order to account
for losses due to intergranular friction. There are various empirical formulas for
calculating them. Bryan and Stoll [10] assume a functional form for the shear
modulus

�1 = paa exp(�b")(�0=pa)n (48)

where pa is the atmospheric pressure,

" =
�

1� �

is the voids ratio, and the mean e¤ective stress due to over-burden pressure is

�0 =
1 + 2K0

3

Z z

0

g(1� �(z))(�r � �f )dz (49)

where z is the depth into the sediment, K0 is the coe¢ cient of earth pressure at
rest, which is typically taken to be 0:5, and g is the acceleration due to gravity.
Based on statistical regressions on laboratory results Stoll arrived at the values
a = 2526; b = 1:504 and n = 0:448. As �eld tests tended to lead to somewhat
higher values for the shear modulus than laboratory results, Stoll [38] suggested
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an empirical modi�cation � = FF � �1 where FF = 2. Badiey, Cheng and Mu
[1] have a similar formulation

� = a� 105"�bp�0 (50)

with a = 6:56; b = 1:10 for sand dominant sediments, a = 2:05; b = 1:29 for
clay dominant sediments and a = 2:44; b = �1:628 for general (indeterminate)
sediments. The complex moduli are then calculated from

�� = (1 + i��=�)� (51)

K�
b =

2 (1 + �)

3 (1� 2�)� (1 + i�Kb
=�)

where �Kb
and �� are the log decrements for compressional and shear vibra-

tions and � is the Poisson ratio.
Figures 21-23 compare the predictions for the variation of shear wave speed

with respect to depth into the sediment given by the Bryan-Stoll and Badiey-
Cheng-Mu empirical formulas for three of the sediments in Table 2 for which
there is experimental data. The data points for Figure 21 are from [33] and
those for Figures 22 and 23 from [34]. How the shear wave speeds are calculated
will be discussed in Section 4.1. It should be noted that the equations of motion
were derived under the assumption that the model parameters were constant and
thus use the equations with depth-varying moduli constitutes an approximation
of uncertain accuracy. Be that as it may, Figures 21-23 indicate that the Bryan-
Stoll formulation with either FF = 1 (silty clay and �ne sand) or FF = 2
(medium sand) best �ts the data. Possibly the �eld factor is needed only for
highly permeable sediments.
The shear wave speed is signi�cantly a¤ected by only three Biot-Stoll para-

meters: the shear modulus � = Re��; the porosity �; and the grain density �r
[16]. In SAX99 the shear wave speed was measured in the range 97 to 147m = s
and the average value cs = 120 was used in the formula � = �c2s.

4 Predictions of the Biot-Stoll model

In the examples of the predictions of the Biot-Stoll model in this section the
frame response moduli were computed from (51) at a depth of z = 0:2m using
the empirical formula of Bryan and Stoll given above. The required Poisson
ratios and log decrements, and �eld factors are given in Table 5.

4.1 Wave speed and attenuation

Upon taking the divergence of both equations in (14) and assuming time har-
monic vibrations e(x; y; z; t) = e(x; y; z)e�i!t; : : : we obtain

Hr2e� Cr2� = �!2�e+ !2�f� (52)

Cr2e�Mr2� = �!2�fe+
�
!2m+ i!d

�
�:
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Figure 21: Predictions for the variation of shear wave speed with respect to
depth for medium sand by four di¤erent empirical formulas for the shear wave
modulus. The measured values are from [33]. The curves labeled "BCM: Gen-
eral" and "BCM: Sand" were calculated from (50) using the parameters given
in the text. The curves labeled "BS: FF = 1" and "BS: FF = 2" were calculated
from (48) with the indicated �eld factor.

Sediment � �Kb
�� FF

Fine sand 0.25 0.15 0.15 1
Medium sand 0.15 0.15 0.3 2
Gravel 0.25 0.15 0.15 2
Silty sand 0.25 0.1 0.1 1
Silty clay 0.25 0.5 0.5 1

Table 5: Poisson ratios and log decrements for �ve sediments.
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Figure 22: Predictions for the variation of shear wave speed with respect to
depth for �ne sand by four di¤erent empirical formulas for the shear wave mod-
ulus. The measured values are from [34]. The curves labeled "BCM: General"
and "BCM: Sand" were calculated from (50) using the parameters given in the
text. The curves labeled "BS: FF = 1" and "BS: FF = 2" were calculated from
(48) with the indicated �eld factor.
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Figure 23: Predictions for the variation of shear wave speed with respect to
depth for silty clay by four di¤erent empirical formulas for the shear wave mod-
ulus. The measured values are from [34]. The curves labeled "BCM: General"
and "BCM: Clay" were calculated from (50) using the parameters given in the
text. The curves labeled "BS: FF = 1" and "BS: FF = 2" were calculated from
(48) with the indicated �eld factor.
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Thus

r2
�
e
�

�
+K

�
e
�

�
=

�
0
0

�
(53)

where

K = �
�
H �C
C �M

��1 � �!2� !2�f
�!2�f !2m+ i!d

�
:

Upon taking the curl of both equations and assuming time-harmonic vibrations
we obtain

�r2' = �!2 (�'� �f�) (54)

0 = �!2 (�f'�m�) + di!�

where ' = r� u and � = r� w: Solving the second equation for � and
substituting into the �rst equation gives

r2'+ k2s' = 0

where

ks =

s
!2(�!m+ i�d� �2f!)

(!m+ id)�
:

Finally solving the time-harmonic version of (14)2 for w to obtain

w =
1

!(!m+ id)

�
Cre�Mr� + !2�fu

�
and substituting this result into (14)1 leads to

r2u+A1re+A2r� + k2su = 0 (55)

where

A1 =
(H � �)!m� C!�f + (H � �)di

(!m+ id)�

A2 =
M�f! � Cm! � iCd

(!m+ id)�
:

There are three complex wave numbers k1; k2; ks where k1; k2 are the square
roots of the eigenvalues of K. Thus the Biot-Stoll model predicts two com-
pressional waves as well as a shear wave. The two compressional waves are
referred to as Type I and II or fast and slow waves. Figures 24 and 25 show
the Biot-Stoll models predictions for Type I wave speed and attenuation for the
�ve sediments of Table 2. Type I waves correspond to the compressional waves
predicted by the Buckingham or elastic models, but for highly permeable sedi-
ments such as the gravel and SAX99 sediments, they are more dispersive with
respect to frequency. The behavior of the attenuation with respect to frequency
f for highly permeable sediments is roughly characterized as increasing like f2
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Figure 24: Biot model predictions for Type I compressional wave speeds for �ve
sediments.

for low frequencies and f1=2 for high frequencies, as opposed to f1 in the Buck-
ingham model. For less permeable sediments the predictions of the Biot model
are similar to those of the elastic model. Figures 26-29 show the Biot model�s
predictions for Type II and shear wave speed and compressional attenuation for
the �ve sediments of Table 2. Both waves have similar speeds. Type II waves
for unconsolidated sediments are highly attenuated and have not been detected
with certainty. See however Section 5.3.

4.2 Re�ection and transmission at the ocean-sediment in-
terface

4.2.1 The case of constant seabed parameters

The equations for re�ection and transmission for the Biot model were originally
worked out by Stoll and Kan [40]. Stern, Bedford and Milwater [36] have con-
sidered the case of depth-varying sediment properties. We will treat the case of
constant properties, but in a way which can be extended in theory to the depth-
varying case. Assuming an incident plane wave of amplitude one, pressure in
the ocean has the form

Po = e
ikxx

�
eikzz +Re�ikzz

�
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Figure 25: Biot model predictions for Type I compressional wave attenuation
for �ve sediments.

where kx = (!=c0) cos �; kz = (!=c0) sin �, c0 is the sound speed in water, the
angle of incidence � is measured from horizontal and the positive z-direction
is into the sediment. The time-harmonic factor e�i!t has been discarded so
that Po will have the same form as the solutions to (53) and (55). Vertical
displacement in the ocean is given by

Uzo =
1

�!2
@Po
@z

=
1

�!2
eikxx

�
ikze

ikzz �Rikze�ikzz
�
:

For the ocean-sediment interface at z = 0, the following conditions are imposed:

Uzo(x; 0) = �Uz(x; 0) + (1� �)uz(x; 0) = uz(x; 0)� wz(x; 0) (56)

Po(x; 0) = �zz(x; 0)

Po(x; 0) = pf (x; 0)

�xz(x; 0) = 0:

These conditions represent continuity of displacement in the ocean with aggre-
gate displacement in the sediment, continuity of normal pressure, continuity of
�uid pressure, and vanishing of shear stress at the sediment surface.
Snell�s law requires the solutions to (53) and (55) in the seabed have the

form �
e(x; z)
�(x; z)

�
= eikxx

�
e(z)
�(z)

�
;

�
ux(x; z)
uz(x; z)

�
= eikxx

�
ux(z)
uz(z)

�
(57)
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Figure 26: Biot model predictions for Type II compressional wave speeds for
�ve sediments.

Substituting the �rst of these into (53) gives�
e00(z)
� 00(z)

�
+ (K � k2xI)

�
e(z)
�(z)

�
=

�
0
0

�
:

For a constant matrix K this system of di¤erential equations has the solution�
e
�

�
= C1E1e

i`1z + C2E2e
i`2z (58)

where the wave numbers are given by

`n =
p
�n � k2x; n = 1; 2

and �n; En are eigenvalues and eigenvectors of K. The branch cut for the square
root is chosen so that Im `n > 0. The exponentially growing components of the
solution (58) involving e�ilnz have been discarded. Substituting the assumed
form for u from (57) into (55) gives

u00 + (k2s � k2x)u = �A1re�A2r�

where the right hand side is known by virtue of (58). This system has solutions
of the form

ux(z) = C3e
i`sz + F1e

i`1z + F2e
i`2z; uz(z) = C4e

i`sz ++G1e
i`1z +G2e

i`2z
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Figure 27: Biot model predictions for Type II compressional wave attenuation
for �ve sediments.

Figure 28: Biot model predictions for shear wave speeds for �ve sediments.
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Figure 29: Biot model predictions for shear wave attenuation for �ve sediments.

where F1; F2; G1; G2 are linear functions of C1; C2 and the components of the
eigenvectors and the wave number is given by

`s =
p
k2s � k2x:

By equating the coe¢ cients of ei`1z; ei`2z; ei`sz; the constants C3 and C4
can be related and the components of the eigenvectors determined. Thus the
four sediments solutions e; (z); �(z); ux(z); uz(z) depend upon three arbitrary
constants. The four interface conditions (56) now constitute a system of four
linear equations which may be solved for C1; C2; C3; R.
Figures 30 and 31 show that the Biot model does not predict a critical

angle as does the �uid model, but it does predict a quasi-critical angle with a
similar value. For instance the critical angle for the medium sand sediment of
SAX99 was 30 �. Figures 32 and 33 show how the re�ection coe¢ cient varies
with frequency at an incident angle of 5 �. Figure 34 shows how the re�ection
coe¢ cient varies with frequency at di¤erent angles for the medium sand of Table
2.
Given that the Biot model predicts that transmission of energy into the

seabed is possible at all angles, the question arises as to whether this might
explain the instances of detection described in [41] during SAX99 of objects
by waves incident at angles below the critical angle. Figure 31 indicates that
at the incident angle of 5 � and frequency 20 kHz used in the experiment, the
coe¢ cient of re�ection was about 0:95. Thus other explanations such as di¤rac-
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Figure 30: Biot model�s prediction for the coe¢ cient of re�ection. The fre-
quency is 20 kHz and the sound speed in water is 1460 m = s, which is below the
compressional wave speeds of all of the sediments.

tion or refraction of energy into the sediment by surface roughness or scattering
of evanescent waves by volume heterogeneity within the sediment seem more
plausible [41], however see Section 5.3.

5 Di¢ culties with and controversies about the
Biot-Stoll model

5.1 Can the parameters be determined accurately enough?

The Biot model predictions for the SAX99 data shown in Figures 1 and 2 are
best �t predictions and thus only can be obtained a posteriori. It is worthwhile
to inquire what is the range of possible predictions, given the parameter ranges
in Table 1, Column 3. Of the Biot-Stoll parameters for which there is much un-
certainty only four, porosity, permeability, grain bulk modulus, and tortuosity,
have much in�uence on Type I compressional wave speeds and attenuation6 .
Figures 35 and 36 show the in�uence of each of these parameters separately on

6 If one accepts the air bubble hypothesis of Chotiros and Isakson [17], then �uid bulk
modulus should be added to this list. See Section 3.3 for a discussion of this hypothesis and
Section 5.2.2 to see the e¤ect of varying the �uid bulk modulus.
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Figure 31: Biot model�s prediction for the coe¢ cient of re�ection. The fre-
quency is 20 kHz and the sound speed in water is 1530 m = s, which is above the
compressional wave speeds of the two silty sediments.
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Figure 32: The re�ection coe¢ cient as a function of frequency at an incident
angle of 5 �. The sound speed in water was 1460m = s.

compressional wave speed and attenuation for the SAX99 sand.
An important aspect of SAX99 was that most of the parameters were mea-

sured su¢ ciently many times to permit estimation of parameter ranges. Figures
37 and 38 show the range of predictions that might result due to the parameter
ranges given in Table 1. In particular if the parameter values were taken to be
the midpoints of the ranges, the estimates of compressional wave speeds would
be about 2% too high. In the worst case in which the data lay on the high curve
of Figure 37, the midpoint values would have underestimated the wave speed
by about 3.5%. On the other hand the predictions for wave attenuation would
be about the same for any choice of values within the range.

5.2 The frame question

There are concerns about the Biot-Stoll model, insofar as its applicability to
unconsolidated seabeds, centered around the extent to which an uncemented
collection of grains, possibly not all of the same type of mineral, can be charac-
terized as an elastic frame.

5.2.1 Is the model applicable to heterogeneous sediments?

The unjacketed test assumes that a single modulus Kr characterizes the frame
material, which is clearly reasonable only for a homogeneous frame, that is,
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Figure 33: The re�ection coe¢ cient as a function of frequency at an incident
angle of 5 �. The sound speed in water was 1530m = s.

one composed of grains of a single mineral. Biot and Willis [5] conjectured
that a heterogeneous material might act as an "equivalent homogeneous solid",
however Hickey and Sabatier [22] point out this would require that changes in
grain shape due to deviatoric strains cancel out, which may be optimistic. Thus
the question of what to do about heterogeneous materials remains open.

5.2.2 Is porosity constant?

Another question is whether in the unjacketed test porosity is unchanged when
the specimen is subjected to �uid pressure. Quite possibly for an uncemented
collection of grains it would change. In this case the moduli in (8) would be
calculated using (9) rather than (11), but whereas the bulk modulusKf of water
is well known, it is not clear how to measure the modulus Kfr. Inversions on
four data sets by Chotiros [16] gave values of Kfr that were 60%; 62%; 88%; 61%
of the values K0

frthat would be obtained by use of (10). The 88% �gure was
from data on uncompacted laboratory sand. He calls the hypothesis Kfr 6= K0

fr

the independent coe¢ cient of �uid content hypothesis (ICFC). As is indicated
in Figure 1, the Biot model prediction for compressional wave speed was higher
than the measured values for the two measurements below one kHz. To see if
the ICFC hypothesis might explain this let Kfr = �K0

fr. Figures 39 and 40
show the results of varying � on compressional wave speed and attenuation.
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Figure 34: Re�ection coe¢ cient as a function of frequency for di¤erent incident
angles for medium sand. The critical angle is around 30 �.

A value of around � = 0:95 su¢ ced to lower the low frequency predictions to
near the measured values, but reduced the predictions at higher frequencies
to well below the measured values. However as Figures 41 and 42 show this
can be ameliorated by increasing the permeability from k = 2:5 � 10�11m2 to
k = 5 � 10�11m2, and the tortuosity from � = 1:35 to � = 1:12 as was done
to generate the "best �t" plot in Figure 1. Thus this hypothesis seems to have
merit. It provides an alternative to simply raising the porosity to get a better
�t to the low frequency data. On the other hand, while there is a hypothetical
experiment by which the additional parameter Kfr might be measured in Biot
and Willis [5], it is not clear whether it is practical. It should also be noted
that the air bubble hypothesis of Chotiros and Isakson [17] (Section 3.3) leads
to the same conclusion. Indeed if we accept (10), but use (41) to compute Kf ,
then the resulting value of D computed from (11) can be equated to that of (9),
resulting in a one-to-one correspondence between the gas volume fraction and
�. Gas fractions of � = 1; 3 and 5 ppm correspond to values of � = 0:984; 0:950
and 0:919.

5.2.3 Should all of the grains be included in the frame?

A �nal di¢ culty with treating an unconsolidated sediment as an elastic frame is
the problem of what should be included in the frame. In [28] it is shown that the
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Figure 35: In�uence of four Biot-Stoll parameters on compressional wave speed.
The green curve used the lower bound for the parameter given in Table 1,
Column 3, the red curve the upper bound, and the blue curve the midpoint.
The midpoint values were used for all parameters other than the one being
varied.
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Figure 36: In�uence of four Biot-Stoll parameters on compressional wave at-
tenuation. The green curve used the lower bound for the parameter given in
Table 1, Column 3, the red curve the upper bound, and the blue curve the
midpoint. The midpoint values were used for all parameters other than the one
being varied.
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Figure 37: Range of predictions for compressional wave speed possible given the
parameter ranges of Table 1, Column 3. The predictions labelled "Best in box"
are those for the parameters of Column 4. The predictions labelled "Best out of
box" are those of Column 4 with the changes � = 41:5; � = 1:12; k = 5� 10�11.
The "Midpoint" curve used the midpoints of the ranges in Column 3. The
"High" and "Low" curves were obtained by moving each the parameters porisity,
permeablity, grain bulk modulus, and tortuosity to whichever range endpoint
increased or decreased the wave speed respectively.
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Figure 38: Range of predictions for compressional wave attenuation possible
given the parameter ranges of Table 1, Column 3. The predictions labelled "Best
in box" are those for the parameters of Column 4. The predictions labelled "Best
out of box" are those of Column 4 with the changes � = 41:5; � = 1:12; k =
5� 10�11. The "Midpoint" curve used the midpoints of the ranges in Column
3. The "High" and "Low" curves were obtained by moving each the parameters
porisity, permeablity, grain bulk modulus, and tortuosity to whichever range
endpoint increased or decreased the wave speed respectively.

54



Figure 39: Result on compressional wave speed of varying the parameter � in
the equation Kfr = �K

0
fr.
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Figure 40: Result on compressional attenuation of varying the parameter � in
the equation Kfr = �K

0
fr.
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Figure 41: Result on compressional wave speed of varying permeability when
Kfr = �K

0
fr with � = 0:95: "bob" is the best �t from Figure 1.
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Figure 42: Result on compressional wave attenuation of varying permeability
when Kfr = �K

0
fr with � = 0:95: "bob" is the best �t from Figure 2.
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application of an external force to a granular lattice causes the formation of force
chains (see Figure 43). Thus it is not clear that all of the sedimentary grains
should be considered part of the frame. Conversely it may be that some �uid is
trapped in cracks in the grains or between grains and should be considered part
of the frame. Chotiros [16] de�ned three additional porosities �f ; �s and �c.
The �rst two are the portion of �uid trapped in the frame and the portion of
the grains to be regarded as part of the �uid. The third, the composite porosity,
is de�ned by

�c =
� � �f

1� �s � �f
: (59)

The composite densities and bulk moduli are de�ned to be

�rc = (1� �f )�r + �f�f ; �fc = (1� �s)�f + ��r (60)

Krc =
KrKf

(1� �f )Kf + �fKr
;Ksc =

KrKf

(1� �s)Kr + �sKf
:

Inversions on four data sets gave values of �f = 0:15; 0; 0; 0 and �s = 0:36; 0:36;
0:07; 0:31 for seabeds of porosity � = 0:37; 0:36; 0:41; 0:40 giving composite
porosities �c = 0:44; 0:57; 0:44; 0:58 which are considerably higher than the
measured porosities. This hypothesis, which Chotiros calls the composite ma-
terials (CM) hypothesis, did not seem to explain the higher apparent porosity,
� = 0:415; for the SAX99 data. However since the bulk moduli Kf and Kr oc-
cur only in the unjacketed test (see Section 2.1) where the presence or absence
of force chains would be irrelevant, it is not clear that the use of the composite
moduli (60)2 is required. If one leaves Kf and Kr as they are and replaces
all instances of �; �f and �r by their composites given in (59) and (60)1, then
the resulting predictions are shown in Figures 44 and 45. It should be noted
that these graphs are su¢ ciently similar to those of Figures 39 and 40 that the
composite materials and independent coe¢ cient of �uid content hypotheses are
indistinguishable on the basis of their predictions of wave speed and attenuation
alone.

5.3 The "fast slow wave" controversy

When in three experiments waves having an apparent speed of about 1200m = s
were detected at subcritical grazing angles, Chotiros [15] conjectured that they
were Type II compressional waves. As indicated in Figure 26 Type II waves
are not predicted to have speeds nearly that large with the parameter values
conventionally used in the Biot-Stoll model. To arrive at a Type II wave speed
of 1200 m/s Chotiros suggested, based upon measurements of the grain bulk
modulus by Molis and Chotiros [31], that the value of the grain bulk modulus
Kr should be around 7� 109 Pa as opposed to the conventional value of about
4 � 1010 Pa, which is the bulk modulus of quartz crystals7 . As indicated in

7Chotiros suggests that the quartz crystal value is not applicable because of cracks and
other imperfections in the sand grains.
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Figure 43: Illustration of a force chain in sand.
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Figure 44: Compressional wave speeds for the SAX99 sand when the proportion
�s of grains to be included in the pore �uid is varied. The proportion �f of �uid
included in the frame was assumed to be zero. The parameters used were those
of Table 1, Column 4.
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Figure 45: Compressional wave attenuation for the SAX99 sand when the pro-
portion �s of grains to be included in the pore �uid is varied. The proportion
�f of �uid included in the frame was assumed to be zero. The parameters used
were those of Table 1, Column 4.
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Figure 46: The e¤ect of using the non-conventional parameter values Kr =
7 � 109 Pa;ReKb = 5:3 � 109 Pa suggested by Chotiros on the predictions for
Type I waves of the Biot model for the SAX99 sediment. Blue lines are the
predictions for the SAX99 best �t parameters of Table 1. Red lines are the
predictions resulting from the alternative parameters.

Figure 35, lowering the value of Kr lowers the predicted Type I wave speeds.
To achieve agreement with the measured Type I wave speeds in the three ex-
periments Chotiros assumed a frame bulk modulus of Kb = 5:3� 109 Pa, which
is about 50 times larger than the conventional values. Figures 46 and 47 show
the e¤ects of these modi�cations on the predictions for the SAX99 sand. Type
I compressional waves become less dispersive with respect to frequency and the
growth of attenuation more nearly linear with respect to frequency. Type II
waves now have speeds in the 1200-1400 m/s range at frequencies above 1 kHz
and are less attenuated.
Subsequent work, both experimental and theoretical, has tended to refute

Chotiros�conjecture. As indicated above the SAX99 measurements con�rmed
the conventional values (Table 1). Simpson and Houston [35] found in laboratory
experiments that for a smoothed water-sediment interface no waves other than
those having the expected speeds of Type I waves could be detected, but for a
roughened interface and shallow grazing angles a wave with an apparent speed of
1200 m/s was detected. The authors state "However, for near normal incidence,
these measurements have enough temporal resolution to clearly show that this
later time arrival is better described by the roughened interface scattering, which
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Figure 47: The e¤ect of using the non-conventional parameter values Kr =
7 � 109 Pa;ReKb = 5:3 � 109 Pa suggsted by Chotiros on the predictions for
Type II waves of the Biot model for the SAX99 sediment. Blue lines are the
predictions for the SAX99 best �t parameters of Table 1. Red lines are the
predictions resulting from the alternative parameters.
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give the appearance of a wave front with a virtual wave speed of 1200 m/s at
shallow ensoni�cation angles, rather than by a 1200 m/s slow compressional
wave." On the theoretical side Hickey and Sabatier [22] argue on the basis
of the Voigt-Reuss-Hill formulae that for the mineral composition of the sand
used in one of Chotiros�experiments the grain bulk modulus must lie between
3:3� 1010 and 3:7� 1010 Pa. This range does not encompass Chotiros�value of
Kr = 7� 109 Pa. They also argue that the constraint

� < 1�Kb=Kr < 1

([5]) requires that Kb < 4:2�109 Pa which again is not consistent with Chotiros�
value of Kb = 5:3� 109 Pa.

5.4 The Biot model�s predictions

5.4.1 The controversy about the growth of attenuation with increas-
ing frequency

It is generally agreed that internal dissipation generates wave attenuation that
is linear in frequency [26]. The Biot model�s prediction that compressional wave
attenuation is not necessarily a linear function of frequency, but is more like f2

at low frequencies and f1=2 at high frequencies is due to viscous losses. This
prediction has been a source of controversy for nearly three decades. Hamilton
[21] stated "The number studies of attenuation in sands from 1-100 kHz a¢ rm
an approximate �rst-power relationship between attenuation and frequency, and
deny any f1=2 relationship as called for by Stoll in this frequency range." More
recently Buckingham [11] asserted "A substantial body of data supports the
view that compressional-wave attenuation in many porous, granular materi-
als varies more or less accurately as the �rst power of frequency, f1, over an
extended frequency range, from 1 Hz up to 1 MHz." On the other hand Kib-
blewhite stated in a survey article [26] "... in spite of the sparsity of data for
marine sediments at low frequencies, the widely held assumption that the rela-
tionship between attenuation and frequency is linear from seismic to ultrasonic
frequencies does not appear justi�ed." Brunson and Johnson [9] measured shear
wave attenuation in the 1-10 kHz range and found "... for a sediment of this
type, the relative motion of the pore �uid, and the sediment skeletal frame is a
signi�cant contributor to the observed loss of energy...". Turgut and Yamamoto
[43] found that "Consistency between predicted and directly measured porosity
and permeability indicates that the viscous loss mechanism has a major e¤ect
on attenuation in the frequency range of 1-30 kHz for sandy sediments." The
source of the di¢ culty is illustrated in Figure 2. It not easy to di¤erentiate
between the predictions of the Biot and Buckingham model in the frequency
range 1-100 kHz, and this historically has been the range in which most mea-
surements of attenuation have been made. The SAX99 measurements do seem
to indicate that the Biot model�s prediction of attenuation varying as f1=2 at
high frequencies is wrong, and this is progress.
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As pointed out in [44] experimental evidence for strong velocity dispersion, as
predicted by the Biot model, is also evidence that attenuation cannot be a linear
function of frequency. Causality dictates the Kramers-Kronig integral relations
between wave speed and attenuation. In O�Donnel et al. [32] it is argued that
the Kramers-Kronig integral relations lead to the following approximate local
relation between wave speed c and attenuation � (in nepers/m)

dc(!)

d!
=

2

�!2
c(!)2�(!): (61)

Thus for the Buckingham model which predicts, to the �rst order in !, that
attenuation is given by � = !, wave speeds must be logarithmically dispersive

c =

�
�2
�
ln! +K

��1
:

Figure 48 shows the Kramers-Kronig compatible �t to the SAX99 data from
[44]
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with c1 = 1705m = s; !1=2� = 100Hz;  = 5:50�10�6Np � s =m; � = 0:3ms; s0 =
0:05ms =m, as well as the prediction of the Buckingham model. As can be seen
Kramers-Kronig relation implies that a strong velocity dispersion necessitates a
departure from attenuation that is linear in frequency. There is other evidence
for strong velocity dispersion. Maguer et al. [30] have found that experiments on
subcritical penetration of energy into the seabed suggest a substantially lower
compressional speed than is measured from cores at 200 kHz and that these
lower speeds are compatible with those predicted by the Biot model. Turgut
and Yamamoto [43] also found velocity dispersion compatible with Biot model
predictions in cross-hole tomography experiments (see Figure 53). Thus while
the SAX99 data tends to a¢ rm f1 growth at high frequencies, it adds to the
evidence that low frequency attenuation is not proportional to f1.

6 Incorporation of frequency-dependent viscoelas-
tic mechanisms

As indicated in Figures 1 and 2 the "standard" Biot model with frequency-
independent bulk and shear moduli fails to agree with the SAX99 data in two
signi�cant ways. It predicts wave speeds that were higher than measured at low
frequencies, at least if the parameters are con�ned to the ranges given in Table
1, Column 3., and it predicts attenuations that are too low at high frequencies.
Ways of addressing the low frequency problem have been addressed above. One
can posit air bubbles in the pore space as Chotiros and Isakson did in [17]
(Sections 2.4,3.3). Alternatively one can adopt the independent coe¢ cient of
�uid content (ICFC) hypothesis discussed in Section 5.2.2 or the composite
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Figure 48: Blue line: Kramers-Kronig compatible �t to SAX99 compressional
wave and attenuation data. Red line: Predictions of the Buckingham model.

material (CM) hypothesis of Section 5.2.3. As can be seen in Figures 44 and 39
any of these conjectured mechanisms have the e¤ect of simply translating the
wave speed curves downward and thus, absent any means of determining the
controlling parameters other than choosing them to agree with the measured
data, there is no way to distinguish among them. The problem of the poor
predictions for attenuation at high frequencies has been addressed recently by
means of the BICSQS model discussed in Section 2.4. In this section we examine
the extent to which it recti�es this problem.
As a starting point we took the midpoints of the intervals in Table 1, Col-

umn 3 as the values of the Biot-Stoll parameter (see Figure 37). The Poisson
ratio, which has negligible e¤ect, was set to � = 0:15, following [17]. The shear
modulus was adjusted to give the experimentally measured value of 120 m/s
[44]. The Reuss model of composite compressibility (41) was used to obtain
agreement with the low frequency wave speed data by specifying a gas vol-
ume fraction �. Agreement with the high frequency measurements for wave
speed and attenuation were obtained by manipulating the parameters Ky and
f� respectively. Finally agreement with the measured values of wave speed and
attenuation in the 1 � 10 kHz range was obtained, to the extent possible, by
adjusting the bulk relaxation frequency fk. A compromise was required here
because values that improved agreement with attenuation worsened it with re-
spect to wave speed. Figures 49 and 50 show the results of these machinations
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Parameter Units SAX-CI SAX-Mid/Dps TY

Porosity � 0.37 0.3785 0.44
Grain density �r kg/m3 2690 2690 2650
Fluid density �f kg/m3 1023 1023 1000
Grain bulk modulus Kr GPa 36 40.5 36
E¤ective �uid bulk modulus Kf GPa 2.15 2.19 2.25
Fluid viscosity � kg/m-s 0.001 0.00105 0.001
Permeability k �2 115 33 17.5
Pore size a � 57 31 28
Structure factor � 1.35 1.38 1.24
Frame shear modulus � GPa 0.028 0.03 0.024
Gap modulus Ky GPa 0.968 0.8/0.9 0.9
Bulk relaxation frequency fk kHz 4.8 4/1.5 3.2
Shear relaxation frequency f� kHz 56 70/80 106

Gas fraction � �10�6 6.7* 5.5 1.4*
Pore size std dev � 0 0/1.25 0

Table 6: SAX-CI: Parameters for the SAX99 sediment used by Chotiros and
Isakson. SAX-Mid: Midponits of the parameter ranges in Column 3 of Table
1. The alternative Dps values in Column 4 assume distributed pore sizes. TY:
The parameters Chotiros and Isakson used to model the cross-hole tomogra-
phy experiemnt of Tugut and Yamamto. The parameters marked with * were
calculated using the Reuss model for composite compressibilities. Chotiros and
Isakson used a di¤erent model. The TY data was not measured at su¢ ciently
high frequencies to ascertain the shear relaxation frequency. Chotiros and Isak-
son listed it as "in�nity".

along with the curves that Chotiros and Isakson arrived at by using the same
procedure. The �t that Chotiros and Isakson arrived at is somewhat better,
but as indicated in Table 6, they used a value of permeability that was more
than three times the midpoint of the estimated range given in Table 1. The
only rationale they give for this adjustment is that "This is consistent with ob-
servations that permeability measurements may only be accurate to within an
order of magnitude." As pointed out in Section 3.4 permeability was measured
in three di¤erent ways during the SAX99 exercise and none of them arrived at a
value nearly as high as the Chotiros-Isakson value. This being the case, a better
alternative may be to use the distributed pore size viscosity correction factor of
Yamamoto and Turgut [45] presented in Section 2.5.2. Figures 51 and 52 show
that when a standard deviation of � = 1:25 is assumed and the mean pore size
distribution is computed from (39) and the midpoint of the permeability range
in Table 1, agreement with the SAX99 data is comparable to that obtained by
Chotiros and Isakson.
In [17] Chotiros and Isakson discuss the predictions of their BICSQS model

for �ve sets of data taken from the literature. Other than the SAX99 data
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Figure 49: Best �ts to SAX99 wave speed data.

Figure 50: Best �t to the SAX99 attenuation data.
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Figure 51: Best �t to the SAX99 wave speed data, assuming distributed pore
sizes.

the only one of the �ve that has measurements of compressional wave speed
against frequency are the cross-hole tomography experiments of Turgut and
Yamamoto [43]. Figures 53 and 54 show Chotiros and Isakson�s best �t to the
wave and attenuation data. Table 6, Col. 5 gives the parameters they used.
It may be noted that the experimental values of wave speed in Figure 53

ascend with frequency more quickly than is predicted by the BICSQS model.
Figure 55 shows that a better �t to the wave speed data can be obtained by
incorporating Biot�s model for air bubble resonance (equation (30)) discussed in
Section 2.4. Figure 56 shows that with or without bubble resonance the BICSQS
model overestimated the compressional wave attenuation in the lower frequency
range. However Turgut and Yamamoto ([43], Figure 6) indicate that calculating
the wave speeds from the measured attenuation using the approximate local
Kramers-Kronig relations (61) somewhat underestimated the measured wave
speeds. This is illustrated in Figure 57 where it is seen that the wave speeds
computed from (61) using numerical integration on the attenuation data in
Figure 56 are not in as good agreement with the measured wave speed values
as the wave speeds calculated from (61) using the higher attenuation values
predicted by the four-mode bubble resonance model.
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Figure 52: Best �t to the SAX99 attenuation data, assuming distributed pore
sizes.

Parameter Units CI Bubble resonance
Gap modulus Ky GPa 1.35 0.55
Bulk relaxation frequency fk kHz 4.75 3.2
Shear relaxation frequency f� kHz 106 100
Gas fraction � �10�6 3.75 3.75
Pore size std dev � 0 0
Resonant frequency fa kHz 4.5
Damping parameter ba MPa-s 0.7

Table 7: Parameters used to compare the BICSQS model with (Col. 4) and
without (Col 3) air bubble resonance. The TY data was not measured at suf-
�ciently high frequencies to ascertain the shear relaxation frequency. Chotiros
and Isakson listed it as "in�nity".
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Figure 53: Best �t, as determined by Chotiros and Isakson [17], to wave speed
data of the cross-hole tomography of Turgut and Yamamoto [43]. Also shown
are the predictions of the standard Biot model withK�

b = 43:6+2:08iMPa; �
� =

29:2 + 1:8iMPa :
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Figure 54: Best �t, as determined by Chotiros and Isakson [17], to wave at-
tenuation data of the cross-hole tomography of Turgut and Yamamoto [43].
Also shown are the predictions of the standard Biot model with K�

b = 43:6 +
2:08iMPa; �� = 29:2 + 1:8iMPa :
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Figure 55: The predictions of the BICSQS model when air bubble resonance
is included. The parameters used are given in Table 7. The curve labeled
Chotiros-Isakson was obtained by reducing the e¤ective �uid bulk modulus to
agree with the value which gave good agreement at low frequencies in the bubble
resonant case and the adjusting the gap modulus and bulk relaxation frequencies
to improve the �t. "Modes" refers to the number of modes used in equation
(28).
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Figure 56: See Figure 55 for a description of the models being compared.

7 Summary and Conclusions

One long-standing objection to the Biot model is that its predictions for com-
pressional wave attenuation are not in accord with a substantial body of exper-
imental evidence that attenuation in unconsolidated sediments grows linearly
with frequency. The measurements made in the SAX99 exercise con�rmed this
approximately linear relation, at least at frequencies above 10 kHz. The use of
frequency-dependent moduli suggested by Chotiros and Isakson [17] (but also by
Biot [8]) in lieu of the frequency-independent moduli traditionally used, seems
to adequately address this problem.
There are two reasons to challenge the Biot model on theoretical grounds.

One is the objection of Hickey and Sabatier [22] that the Biot model is not ap-
plicable to heterogeneous sediments (Section 5.2.1). This criticism is valid, but
it is unknown what e¤ect this de�ciency has on the predictions of the model.
The other criticism of the model is the assumption that an unconsolidated sed-
iment can be modelled as a Hookean elastic solid of constant porosity which
encompasses all of the sand grains. As discussed in Sections 5.2.2 and 5.2.3 this
provides a feasible explanation of the poor agreement of the Biot model with low
frequency data in the SAX99 exercise, at least when the measured parameter
values are used. It should be noted however that the presence of air bubbles in
the pore space provides an alternative explanation of these results, one which
admits the possibility of air bubble resonance which might be of some utility
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Figure 57: Comparison of the wave speeds predicted by the four-mode bubble-
resonant BICSQS model with those calculated from the Kramers-Kronig rela-
tions. See the text for further explanation.
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in explaining the results of the cross-hole tomography experiment of Turgut
and Yamamoto [43] discussed in Section 6. As noted above, however, all of
the postulated mechanisms make predictions too similar to distinguish among
them.
The major concern about the Biot model that remains is its complexity

and the number of parameters that are important, but di¢ cult, or at least
expensive to measure. The BICSQS model of Chotiros and Isakson does not
(disregarding the unin�uential introduction of the Poisson ratio) increase the
number of parameters in the model, however it does replace four parameters
ReK�

b ; ImK
�
b ;Re�

�; Im��, none of which have much in�uence on compressional
wave speed and attenuation, with three parameters, the gap modulus Ky and
the relaxtaion frequencies fk and f� all of which strongly in�uence the BICSQS
model�s predictions in certain frequency ranges. We currently have no means of
determining these parameters other than from measured values of wave speed
and attenuation in the appropriate frequency range. Likewise the distributed
pore size version of Biot�s viscosity correction factor due to Yamamoto and
Turgut [45] should be used in lieu of Biot�s original, since there is every reason
to believe that pore size distribution is not uniform. This again replaces a
relatively unin�uential parameter in the standard Biot model, pore size, with
the standard deviation parameter ��, which as indicated in Figure 14, can have
a substantial e¤ect on the Biot model�s predictions, at least if �� � 1 or 2 as is
conjectured.
In summary, with the enhancements suggested by Chotiros and Isakson and

Yamamoto and Turgut, the Biot model is now robust enough to explain all
extant measurements of compressional wave speed and attenuation using plau-
sible physical mechanisms. Its predictive value is still in question because of the
di¢ culty of determining the parameters upon which it depends.
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